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Abstract

This paper focuses on real-time rotation estimation for model-based automated visual inspection. In the case of model-
based inspection, spatial alignment is essential to distinguish visual defects from normal appearance variations. Defects are
detected by comparing the inspected object with its spatially aligned ideal reference model. Rotation estimation is crucial
for the inspection of rotationally symmetric objects where mechanical manipulation is unable to ensure the correct object
rotation. We propose a novel method for in-plane rotation estimation. Rotation is estimated with an ensemble of nearest-
neighbor estimators. Each estimator contains a spatially local representation of an object in a feature space for all rotation
angles and is constructed with a semi-supervised self-training approach from a set of unlabeled training images. An
individual representation in a feature space is obtained by calculating the Histograms of Oriented Gradients (HOG) over a
spatially local region. Each estimator votes separately for the estimated angle; all votes are weighted and accumulated. The
final estimation is the angle with the most votes. The method was evaluated on several datasets of pharmaceutical tablets
varying in size, shape, and color. The results show that the proposed method is superior in robustness with comparable
speed and accuracy to previously proposed methods for rotation estimation of pharmaceutical tablets. Furthermore, all
evaluations were performed with the same set of parameters, which implies that the method requires minimal human
intervention. Despite the evaluation focused on pharmaceutical tablets, we consider the method useful for any application
that requires robust real-time in-plane rotation estimation.
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Introduction

Quality control of an industrial process covers all aspects that

influence the quality of a product [1]. It is based on measuring and

assessing process parameters such as temperature and pressure as

well as various product characteristics such as shape, hardness,

composition, and visual appearance. Visual appearance can be

important both for functional and aesthetic reasons and for

compliance with statutory and regulatory requirements. Due to

imperfect production processes, a compliant visual appearance is

usually assured by a subsequent visual quality inspection [2–4].

Visual inspection is performed either manually by trained

personnel or automatically by inspection machines. Manual

inspection is slow, tedious, and subjective. It was reported [4]

that human inspectors are prone to classify inspected objects as

defective only to satisfy a rejection quota. Nevertheless, the high

flexibility of a manual inspection still makes it a viable option for

small production batches. Automatic inspection, by contrast,

produces fast, objective, and reproducible results but requires a

sophisticated system consisting of mechanical manipulation,

acquisition, registration, and analysis. Registration and analysis

are difficult, because products can vary in size, shape, and surface

complexity. Moreover, due to surface defects being visible only

under directed illumination, registration and analysis must cope

with rotation dependent object surface appearance.

Analysis only becomes tractable by the integration of a priori

knowledge of the object, i.e., a reference model [3], [5]. Analysis is

then performed by comparing the inspected object with its

spatially aligned, ideal reference model. Rotation estimation is

crucial for the inspection of rotationally symmetric objects where

mechanical manipulation is unable to ensure correct object

rotation.

We propose a method for model-based real-time rotation

estimation. Rotation estimation uses an ensemble of nearest-

neighbor estimators, where each estimator corresponds to a

stationary spatially local region at various object rotations.

Estimations from all estimators are weighted, based on the angle

for which the estimator votes. Weighted estimations are then

accumulated in a vote accumulator. The estimated angle is the

angle with the maximum number of votes. Further, we describe
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the estimator’s weight estimation and propose a method to

improve estimators from unlabeled training samples. The method

was evaluated on several datasets of pharmaceutical tablets. At

inspection, the tablets are mechanically constrained on a rotating

drum, as shown in Figure 1. Rotation estimation of pharmaceu-

tical tablets is a challenging task because of normal intra- and

inter-tablet variability, which occurs due to imperfect production

processes, the required generality of the method – it should work

for a variety of shapes, imprints, and surface appearances – and

speed requirements. A typical inspection machine inspects 100
tablets per second.

Although the evaluation is focused on pharmaceutical tablets,

we consider the method useful for any application that requires

robust real-time in-plane rotation estimation.

Related Work

Špiclin et al. [6] proposed three registration methods for in-

plane rotation estimation: Direct Pixel Matching (DPM), Principal

Axes Matching (PAM), and Circular Profile Matching (CPM).

Direct Pixel Matching evaluates a similarity measure (SM)

between the reference and a sample image. SM is a normalized

cross-correlation of the rotating reference image and a sample

image. The rotation angle west
is estimated by maximizing the SM

between the two: west~ arg maxw SM(w). The method directly

matches the pixels in fx,yg space; thus the SM must be evaluated

for each rotation angle individually. It therefore requires a rotation

of the reference image. Each rotation includes an interpolation of

the whole image, which induces a large performance penalty.

Circular Profile Matching, on the other hand, is based on the

extraction and alignment of circular profiles. A circular profile is a

1-D function I(w) obtained by integration of intensity values of a

2D image I(x,y) within a ring centered at the tablet center:

I(w)~

ðr2

r1

I({r sin w,r cos w)dr: ð1Þ

The rotation angle is estimated by a 1-D cross correlation of the

reference’s and the sample’s circular profiles. Compared to the

DPM, performance is improved by reducing the problem to one

dimension.

Principal Axes Matching estimates the rotation between

the reference and a sample image by matching the angles of the

principal axes [7]. The principal axes are obtained on the

assumption that an image I(x,y) represents a density function

I : R2.R. Principal axes are the eigenvectors of the covariance

matrix C~E(I(x,y):(p{m)(p{m)T ), where m denotes the image

center ½xc,yc� and p~½x,y�. The angle between the reference and

sample image is obtained directly from the angles of the principal

axes between the two images. Principal axes have a residual +p
sign ambiguity. To determine the rotation with principal axes

reliably and accurately, matched images must also contain a

distinctive shape asymmetry, and additional validation must be

performed to resolve the +p ambiguity. Špiclin et al. extensively

evaluated the described methods and concluded that only the

CPM method is suitable for rotation estimation of pharmaceutical

tablets.

In general, prior work on rotation estimation is either sensitive

to outliers due to non-robust global similarity measure [8],

requires extensive parameter tuning, assumes rotationally sym-

metric illumination or does not run in real time.

Method

The key idea of the proposed method is to exploit the rotation

dependence of HOG features to construct a representation of an

object in a feature space for all rotation angles. Features are

calculated on a dense grid of spatial regions, which tile a detection

window. The detection window is determined in a preprocessing

step from the boundaries of the segmented area [9]. Each spatial

region corresponds to a separate reference set that contains a

region appearance – in HOG feature space – at all rotation angles.

Angle estimation is performed with an ensemble of nearest-

neighbor (in Euclidean space) estimators, where each estimator

individually votes for the resulting angle.

The method is divided into two phases: the training and the

process phase. In the training phase, (Figure 2) reference sets

describing object appearance on a valid rotation interval are

constructed. A valid rotation interval is set by the user and

determines valid object rotations (usually on the interval ½0,2p)).
The rotation interval is discretized into a set of valid rotation

angles W using a predefined discretization step dw. Each reference

set contains feature vectors describing the corresponding spatial

regions at all valid rotation angles. Reference sets are initially

constructed by rotating a single reference image and are then

adjusted with a set of unlabeled training images. The unlabeled

training set is also used to determine weights for each spatial

region.

In the process phase, the constructed reference sets and

estimated weights are used for angle estimation. Estimation is

performed with an ensemble of nearest-neighbor estimators where

each estimator votes for the resulting angle.All votes are weighted

and accumulated. The resulting angle is the angle that accumu-

lated most votes.

We begin with a brief description of Histograms of Oriented

Gradients and then describe the construction of initial reference

sets, their iterative adjustment, and a weight estimation scheme.

We conclude with the description of a weighted voting-based

rotation estimation.

Histograms of Oriented Gradients
Dalal and Triggs [10] proposed Histograms of Oriented

Gradients as a feature set for robust human detection and

Figure 1. Mechanically constrained inspected products on an
automated inspection machine.
doi:10.1371/journal.pone.0092137.g001
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localization. A feature set describes local appearance and shape by

distributions of gradient orientations. The basic implementation

defines an object boundary (detection window), sub-divided into

smaller spatial regions (cells) (Figure 3). Each cell contains a

distribution of gradient orientations. Illumination invariance is

achieved by normalizing the cell values over larger blocks, which

are formed by grouping cells in a sliding fashion. Zhu et al. [11]

extended the original work to non-uniformly tiled cells with

varying cell sizes and block layouts. Extracting features from

overlapping cells by a straightforward implementation is time

consuming because we redundantly evaluate the same areas

multiple times. To avoid this, Zhu et al. [11] proposed an integral

image approach to HOG feature extraction. Integral images

(Figure 4) enable a constant time HOG calculation over an

arbitrary rectangular region.

Reference set
We begin with the construction of a set of blocks B over which

we calculate HOG features. Each block consists of 4 cells in a 2|2
layout. To minimize user input, the blocks in a set B span over

multiple scales. On each scale, the blocks uniformly tile the

detection window. We start at the largest scale – the whole

detection window – and then iteratively reduce the size by a

constant factor until we reach the smallest scale (Figure 5).

With a set of blocks b[B and a reference image IR(w), a

reference set Rb is constructed for each block b.

Reference set Rb,b[B, where Rb~fRb
wg,w[W is a set contain-

ing the features extracted from a block b over all valid angles W. A

set of valid angles W is obtained with discretization of the valid

rotation interval. The dimensionality of a feature vector Rb
w

corresponds to the number of cells in each block and the number

of histogram bins in each cell.

For all the angles w[W, we rotate the reference image by w then

calculate the HOG features over all blocks in B. The resulting

features are stored in corresponding reference sets Rb.

Reference set adjustment. Initial reference sets, containing

feature vectors describing an object appearance at all angles w[ ,

are constructed from a single image. This representation is biased,

because it is constructed from a single reference image IR

assuming a rotationally invariant appearance. Bias is evident in

a case of a corrupted reference image or in a case of rotationally

non-symmetric illumination. The assumption of a constant surface

appearance is relaxed by a semi-supervised [12] self-training

approach. This enables the accommodation of an angle-depen-

dent surface appearance, assuming only a piecewise constant

surface appearance. By that we mean that on an arbitrarily small

interval ½{wconf ,wconf � the surface appearance remains constant.

The semi-supervised self-training approach is performed in an

iterative fashion. Reference sets Rb,b[B are iteratively adjusted,

Figure 2. Training process. An initial weight and reference set estimations (left) are iteratively refined with a set of unlabeled training images
(right). R and W denote reference and weights set respectively.
doi:10.1371/journal.pone.0092137.g002

Figure 3. Histograms of Oriented Gradients. The detection
window is subdivided into spatial cells, which are then concatenated
into larger blocks.
doi:10.1371/journal.pone.0092137.g003

Figure 4. Integral image. The value I(x,y) at any point (x,y) is the
sum of all the pixels above and to the left of (x,y) inclusive,

I(x,y)~
Xx

0

Xy

0
i(x’,y’) — integral FABCD of pixel values within

arbitrary rectangle ABCD is obtained by FABCD~I(D)zI(A){
I(B){I(C).
doi:10.1371/journal.pone.0092137.g004
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with a set of n unlabeled training images T~fTig,i~1, . . . ,n.

Starting with the initial reference sets, we estimate angles west
i

all training images T . For each training image Ti, we construct

another set in HOG space Sb
i ,b[B, similar to the initial reference

set Rb, except that here each set describes the appearance only on

the local interval w[½west
i {wconf ,west

i zwconf �.
This way we obtain multiple sets Sb

i ,b[B,i~1, . . . ,n, each

containing a feature representation of an object on a local

interval (Figure 6).

Note that each element of a reference set Rb
w[Rb contains a

feature representation of the corresponding block b at the specific

angle w[W. Each element Rb
w is replaced with the median value of

all object representations Si,
b , i~1, � � � ,n, at the specific angle w.

The whole adjustment procedure is iteratively repeated until the

angle estimations of the training images remain stationary or the

maximum number of iterations is reached.

Weight estimation
In addition to the iterative reference set adjustment, we

introduce an angle-dependent block-weighting scheme due to an

empirical observation that not every block is equally relevant at all

rotation angles (Figure 7). Weights quantify the importance of the

local region b[B when voting for the angle w[W.

Let W be a set containing weights W~fW b
wg,b[B,w[ for all

the blocks B at all valid angles W. The weight W b
w of block b and

angle w is estimated with an evaluation set Eb, which is constructed

by combining sets Sb
i described in the previous section.

Each element in a set Sb
i has a known angle ws on interval

½west
i {wconf ,west

i zwconf � and represents an object appearance in

the HOG feature space. The evaluation feature set for each block

b is a combination of all local reference sets: Eb~Sb
1| . . .|Sb

n.

For each element in a set Eb with a known angle ws, k nearest

neighbors are located in the reference set Rb. Each nearest

neighbor in the reference set has a corresponding angle

wref
j ,j~1, . . . ,k. The probability wb

s that an element s in Eb

contributes to the true angle ws is a percentage of nearest

neighbors in the a radius:

wb
s ~

Xk

j~1
1½jws{wref

j jva�
k

ð2Þ

The radius a~
kdw

2
is calculated from the sampling resolution

dw of the reference set and a selected number of nearest neighbors

k. Essentially, a is chosen such that at most k neighbors fit in the a
radius.

A weight W b
w is obtained by collecting and averaging evaluation

results wb
s for all the elements in Eb with the angle w:

W b
w ~

X
Vs

wb
s ½ws~w�X

Vs
1½ws~w�

ð3Þ

This criterion should give higher weights to blocks that have a

distance function with a well-defined global minimum. Figure 8,

shows two distance functions. If the distance function dist(Rb,Eb
s )

— which is a Euclidean distance — has a well-defined global

minimum (Figure 8a), most of the k-nearest neighbors will be in

the a radius, resulting in high wb
s . On the other hand, if a distance

Figure 6. Reference set adjustment. Each of the training samples
contributes to the reference set on local interval w[½west

i {wconf ,west
i z

wconf �. For illustration purposes, angles with multiple representations
are colored. Acquisition of unlabeled training images is usually trivial,
thus an arbitrary number of feature representations can be obtained at
every angle.
doi:10.1371/journal.pone.0092137.g006

Figure 7. Set of blocks is equal for all rotation angles W. Each
block contains relevant information, i.e., imprint, only at certain angles.
doi:10.1371/journal.pone.0092137.g007

Figure 8. Nearest neighbors in an a radius. Left, all k nearest
neighbors are in an a radius, by contrast most of the k nearest
neighbors on the right figure are spread over the interval ½0,2p).
doi:10.1371/journal.pone.0092137.g008

Figure 5. Initial set of cells. Cells are constructed by uniformly tiling
the detection window with cells of decreasing size. Starting with whole
detection window c0 , we iteratively decrease the size by a constant
factor cnz1~k cn,0ƒkv1.
doi:10.1371/journal.pone.0092137.g005
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function does not have a well-defined global minimum (Figure 8b),

k nearest neighbors will be spread over all the angles w[ ,

resulting in low wb
s .

Rotation estimation
The rotation angle of the sample image Is is estimated by

approximate nearest-neighbor searches over the constructed

reference sets Rb. First, feature vectors over all the blocks b[B

are extracted from the sample image Is. Then, for each feature

vector corresponding to the block b[B, k nearest neighbors

wb
j ,j~1, . . . ,k are located in the reference set Rb. Each nearest

neighbor contributes a single weighted-vote for its estimated angle.

All the votes are accumulated in an accumulator Aw and

weighted according to the weights in W:

Aw~
X
Vb[B

Xk

j~1

W b
w ½w

b
j ~w�: ð4Þ

The estimated sample’s angle west
is then the angle with most

accumulated votes:

west~ arg max
w

Aw: ð5Þ

Experiments and Results

Datasets
Eight datasets of various image quality and imprint visibility

were obtained and captured for evaluation (Figure 9). Datasets

were captured with a SPINE machine vision system (Figure 1),

using a trilinear line-scan camera and fixed white LED illumina-

tion. The setup is shown in Figure 10. The eight datasets contain

514, 419, 272, 383, 447, 407, 329, and 329 images, respectively.

Tablets differ in size, color, shape, and imprint.

Datasets 7 and 8 contain the same tablet type but were captured

under a different illumination angle. Datasets 1–5 contain tablets

with good imprint visibility; by contrast, datasets 6–8 contain

images with poor imprint visibility, i.e., the angle is often hard to

determine even upon close examination.

All datasets with supporting information are freely available

upon request.

Implementation details
The proposed method along with the CPM method was

implemented in C++. The HOG features were extracted using an

integral image approach, due to blocks spanning over multiple

scales of the detection window. An angle resolution dw of the

reference set was set to 10. The same resolution was used for the

similarity measure evaluation of the CPM. This effectively put the

upper bound to estimation accuracy of both methods to 0:50. A

nearest-neighbor search in the reference set was performed using

the FLANN [13] library and its kd-tree [14] approximate nearest-

neighbor implementation. A separate kd-tree was constructed for

each block, effectively speeding up the nearest-neighbor search by

an order of magnitude, compared to an exhaustive search. For

each block, k~15 nearest neighbors were located, weighted, and

stored in the vote accumulator Aw. The accumulator was

smoothed with a s~10 Gaussian kernel. The rotation angle was

estimated with an exhaustive search over the vote accumulator. In

the training phase, 160 unlabeled training images were used with a

confidence interval ½{wconf ,wconf �, wconf ~100.

Metrics
The registration robustness and accuracy were evaluated by the

criteria proposed by Špiclin et al. [6]. The registration robustness

was determined by the percentage of successful registrations, i.e.,

registrations with an absolute error E below 50. Estimation

accuracy is defined as the mean absolute angular error of

successful registrations. Using this definition, inaccuracy has the

upper bound at 50. We found such restriction necessary to reduce

the effect of outliers (results with large error) on the resulting

accuracy. Otherwise, a single sample could have a disproportion-

ally large effect on the resulting accuracy. Nevertheless, we

quantified samples with large errors (samples with error E above 50)
with hit percentage. A 5 degree upper bound was chosen to

correspond with the upper bound proposed by Špiclin et al. [6].

An absolute error E is a distance between the estimated angle

west
and the gold standard angle wref

:

E~jwest
{wref j ð6Þ

The reference angle wref
is estimated from N manually

positioned corresponding points on the reference ½xr
l ,y

r
l �,l~1, � � �

N and sample ½x s
l,y s

l�,l~1, � � � ,N image. wref
is estimated by

minimizing the mean squared distance, between the correspond-

ing points as a function of rotation:
Figure 9. Evaluation datasets 1–8.
doi:10.1371/journal.pone.0092137.g009

Figure 10. Illumination and camera view geometry. Camera view
is parallel to the rotation axis.
doi:10.1371/journal.pone.0092137.g010
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wref ~ arctan

XN

l~1

(xs
l y

r
l {xr

l y
s
l )

XN

l~1

(xr
l x

s
l zyr

l y
s
l )

ð7Þ

Evaluation
The evaluation was performed with a one-round cross-

validation. From each dataset, 160 unlabeled images were used

for the training, and the rest of the images were used for the

evaluation. First, we evaluated robustness, accuracy, and speed on

eight captured datasets. Then, we evaluated the registration

robustness of the proposed method on synthetically degraded

samples. Synthetic degradation allowed for evaluation at a

predefined degree of surface degradation. Finally, we evaluated

the effect of the reference set adjustment and weighting of the

nearest neighbor estimators (nn-estimators) on accuracy and hit

percentage.

Evaluation on real datasets. Table 1 shows the registration

accuracy and the hit percentage for the eight captured datasets.

Average execution times for each method are shown in Table 2.

Both the proposed method and the CPM method successfully

estimated the angles, that is with error v50, for all the samples in

sets 3 and 5. For sets 1, 2, and 7, the CPM method failed on :8%,

1:4%, and 1:5% of samples, respectively. The proposed method,

on the other hand, successfully estimated the angles for all the

samples. Sets 4, 6, and 8 were more difficult datasets due to poor

imprint visibility and +p ambiguity. For set 4, the CPM method

failed in 2:7% of cases and for set 8, in 1:5% of cases. The

proposed method successfully estimated the angles for 100% of the

samples. For set 6, a success rate of the CPM is 94%. The samples

in this set had a poor imprint visibility (Figure 9) and a near

symmetric imprint shape. For some samples, the rotation angle

was hard to determine even upon close examination. Irrespective

of this, the proposed method exhibited a near 100% success rate.

The accuracy of the proposed method was comparable on all

evaluation datasets (Table 1). For sets 1, 2, 3, 6, 7 and 8, the

proposed method achieved the highest accuracy; while for sets 4

and 5 the difference in accuracy was negligible (*:30). The

accuracy of the proposed method was affected by accumulator

smoothing. When smoothing the accumulator with the Gaussian

kernel, we assumed that the votes were normally distributed with

the mean at the true rotation angle. As shown in Figure 11, the

vote distribution was skewed, thus smoothing introduced an

estimation bias. Smoothing was, nevertheless, essential because of

the limited number of votes.

Robustness evaluation. Two synthetically degraded data-

sets simulating defective surfaces were created by occluding a

certain percentage of the tablet area. Various degrees of occlusion

simulate various degrees of imprint defects. Datasets created in this

way enable registration robustness and accuracy evaluation at a

predefined degree of appearance changes.

The first set was generated by degrading samples in dataset 1

and the second set, by degrading samples in dataset 6. The tablet

area on each sample was occluded at random positions with

patches taken from the tablet area without imprint (Figure 12).

The evaluation of the first synthetically degraded dataset

(Figure 13) showed that the success rate of the CPM declined to

90% at 10% of the sample area occluded. The proposed method

achieved a 90% success rate even with 50% of the tablet area

occluded. The evaluation of the second degraded dataset

demonstrated similar results. Registration robustness is of utter

importance when performing a model-based visual quality

inspection, because a failed registration will result in wrong

classification.

Effect of reference set adjustment and weighting of nn-

estimators. The effect of the reference set adjustment and

weighting of nn-estimators was evaluated on dataset 6; this set was

used because it contained samples with high appearance variability

and poor imprint contrast. Results are shown in Table 3. The

results show that reference set adjustment is essential to increase

registration robustness. The registration success rate without

weighting and reference set adjustment was 87:4%. By introducing

weights, the success rate increased to 94:9%; by adjusting the

reference set, it increased to 99:3%. Combining the adjustment of

the reference set and the weighting of the spatial regions, we

obtained a 99:8% success rate. On this dataset, the CPM method

achieved a 93% success rate.

Discussion

The main difficulty in the registration of pharmaceutical tablets

arises from intra- and inter-tablet variability. Furthermore, a

registration method should be general enough to work for a variety

of shapes, imprints, and surface appearances, with minimal human

intervention, while retaining sufficient accuracy, robustness, and

Table 1. Registration results for the proposed method and two reference registration methods.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Error (0)

CPM 1.27 1:90 1:28 1.50 1.64 2:00 1:02 1:34

Proposed method 1.27 1.69 0.95 1:68 2:02 1.55 0.85 1.32

Hits (%)

CPM 99:2 98:6 100.0 97:3 100 93:0 98:5 98:5

Proposed method 100.0 100.0 100.0 100.0 100 99.8 100 100.0

doi:10.1371/journal.pone.0092137.t001

Table 2. Average process time for compared methods.

Process time [ms]

CPM 1:02

Proposed method 1:36

doi:10.1371/journal.pone.0092137.t002
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performance for real-time inspection (v5 ms). A method based on

the extraction of circular profiles [6] had been proposed

previously. Its main advantages were simplicity and speed, given

the assumption of rotationally symmetric illumination and

rotationally invariant object appearance. It required a parameter

fine-tuning for each tablet type individually, an accurate segmen-

tation, and an accurate center estimation (estimation error below

1% of an object size).

In practice, perfect diffuse illumination is undesirable for the

inspection of surface structures, because shapes and surface

variations are difficult to recognize. Under directed illumination,

on the other hand, surface appearance varies with the angle of

rotation.

In the proposed method – without reference set adjustment – a

single reference image is used to build a reference set containing

an object representation for all valid rotation angles. However,

under directed illumination, a single reference image is not a good

description of the surface appearance at all rotation angles,

because appearance varies with the angle of rotation. The

proposed method automatically adjusts a representative model of

the object, avoiding the rotationally invariant appearance

requirement. This is done by a semi-supervised self-training

approach, iteratively improving the object representation at

various angles. Due to a non-parametric approach to angle

estimation this is easily incorporated into the estimation. The

method builds the object representation assuming a locally

constant appearance on an arbitrarily small interval

½{wconf ,wconf �. As already noted in [6], in-plane rotations of

round tablets are random and uniformly distributed on ½0,2p)

interval. Given the uniform distribution, we obtain
nwconf

p
different

feature representations at each angle. Here n is the number of

training samples. Clearly, an arbitrary number of feature

representations can be obtained for an arbitrarily small wconf
by

increasing the number of training samples. This is a feasible

approach, because the acquisition of a large set of unlabeled

samples is usually simple to do and economical. An improved

representation of an object is the main reason for the improvement

of registration robustness.

Registration error increases slightly with reference set adjust-

ment. This is because we use a finite number of unlabeled training

samples for the reference set adjustment. To incorporate

information of each unlabeled sample, a rotation angle for each

sample must first be estimated using the unadjusted reference set.

Consequently, we are adjusting the reference set with training

samples with the estimated rotation angles, where some estima-

tions can be erroneous. Erroneous estimations affect the adjust-

ment process and subsequently introduce error into the estimation

framework.

By decoupling spatial regions and by treating each as an

individual model, the dimensionality of each model is reduced,

consequently enabling the use of spatial structures for a fast

nearest-neighbor search. Decoupling also increases estimation

robustness by eliminating the effects of outliers but reduces the

discriminant power of each model. This approach closely

Figure 11. Distribution of accumulated votes is skewed. For illustration purposes only an interval ½p
2

,
3p

4
� is shown.

doi:10.1371/journal.pone.0092137.g011

Figure 12. Synthetically degraded dataset. Occlusion patches are
randomly spread over the tablet surface. Figures show samples with
0{50% of the area occluded.
doi:10.1371/journal.pone.0092137.g012
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resembles the description of the ensemble methods given in [15].

The advantage of the ensemble approach is shown by increased

robustness and accuracy [16]. In the proposed method, each

model determines an angle solely from its local neighborhood.

This increases the robustness but reduces the discriminative power

of each model. This reduction is alleviated by adjusting the

reference set to represent better an object at all rotation angles,

and by weighting each spatial region according to the angle for

which it votes for. Figure 14 illustrates the weight of each spatial

region at various angles for two different tablet types. Essentially,

both weighting and reference set adjustment achieve a similar goal

by different means. Both increase the robustness of the method by

reducing the power of irrelevant spatial regions. To highlight the

advantage of the proposed method further, note that all the results

are obtained with the same set of parameters, whereas the CPM

method requires parameter fine-tuning for each dataset individ-

ually.

In the proposed method, we used a uniform grid partitioning to

calculate the HOG feature descriptors. Nonetheless, other

partitioning strategies are also possible. For natural images, Zhou

et al. [17] partitioned an image into several rectangular horizontal

and vertical partitions. On natural images, many objects remain in

vertically and horizontally consistent locations relative to other

objects; note that this does not necessarily hold true for other types

of images. In [11], Zhu et al. used the Adaboost algorithm to select

an optimal set of blocks for human detection. In our work, we did

not consider this approach, because boosting algorithms [18],

Figure 13. Robustness (left column) and accuracy (right column) evaluation, performed on synthetically degraded images. Results
for first and second synthetically degraded datasets are presented in the first and second row respectively.
doi:10.1371/journal.pone.0092137.g013

Table 3. Effect of block weighting and reference set
adjustment on registration accuracy.

Uniform weights Non-uniform weights

Error (0)

Initial 1.52 1.51

Adjusted 1.59 1.55

Hits (%)

Initial 87.4 94.9

Adjusted 99.3 99.8

doi:10.1371/journal.pone.0092137.t003
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while common for feature selection, usually require extensive

training times and large training sets.

In the context of the current state-of-the-art methods for rigid-

body registration, the proposed method uses a dense grid for

feature calculation, with a finite set of possible transformations.

This approach imposes an upper bound to registration accuracy.

By contrast, most state-of-the-art methods start by detecting local

regions invariant under affinity, and then calculate features over

those regions. Several region detectors were proposed for this task

[19], mostly focusing on region detection on planar structures. A

descriptor [20] is associated with each region, which is used to

establish correspondences between the regions and their descrip-

tors on multiple images. Region detection and correspondence

search are difficult in the presence of repetitive or undescriptive

structures. With a dense approach, both region detection and

correspondence search are avoided, thus eliminating two possible

points of failure. This is possible because we are concerned only

with a single degree of freedom – not the whole affine

transformation. Note, that in medical imaging numerous robust

methods [21] have been proposed for rigid [22] [23] and non-rigid

[24] registration. However, the application of those methods in

industrial setting is usually impractical due to high computational

complexity.

Conclusion

In this paper, we proposed a new rotation estimation method

and demonstrated its performance and efficiency relative to

another method for rotation estimation of pharmaceutical tablets.

The proposed method requires minimal human intervention; all

evaluation results were obtained with the same set of parameters.

In addition, it does not require segmentation, because the voting

scheme reduces the voting power of outliers, e.g., wrongly

segmented or defective regions. Using a real dataset, we show

that introducing unlabeled training images increases the robust-

ness by relaxing the constant appearance assumption. Despite the

fact that the evaluation focused on pharmaceutical tablets, we

consider the method useful for any application that requires robust

real-time rotation estimation.
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